(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__f(f(a)) → a__f(g(f(a)))
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(g(X)) → g(X)
a__f(X) → f(X)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
mark(f(X)) →+ a__f(mark(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / f(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__f(f(a)) → a__f(g(f(a)))
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(g(X)) → g(X)
a__f(X) → f(X)
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
g/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__f(f(a)) → a__f(g)
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(g) → g
a__f(X) → f(X)
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
a__f(f(a)) → a__f(g)
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(g) → g
a__f(X) → f(X)
Types:
a__f :: a:f:g → a:f:g
f :: a:f:g → a:f:g
a :: a:f:g
g :: a:f:g
mark :: a:f:g → a:f:g
hole_a:f:g1_0 :: a:f:g
gen_a:f:g2_0 :: Nat → a:f:g
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__f,
markThey will be analysed ascendingly in the following order:
a__f < mark
(10) Obligation:
TRS:
Rules:
a__f(
f(
a)) →
a__f(
g)
mark(
f(
X)) →
a__f(
mark(
X))
mark(
a) →
amark(
g) →
ga__f(
X) →
f(
X)
Types:
a__f :: a:f:g → a:f:g
f :: a:f:g → a:f:g
a :: a:f:g
g :: a:f:g
mark :: a:f:g → a:f:g
hole_a:f:g1_0 :: a:f:g
gen_a:f:g2_0 :: Nat → a:f:g
Generator Equations:
gen_a:f:g2_0(0) ⇔ a
gen_a:f:g2_0(+(x, 1)) ⇔ f(gen_a:f:g2_0(x))
The following defined symbols remain to be analysed:
a__f, mark
They will be analysed ascendingly in the following order:
a__f < mark
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__f.
(12) Obligation:
TRS:
Rules:
a__f(
f(
a)) →
a__f(
g)
mark(
f(
X)) →
a__f(
mark(
X))
mark(
a) →
amark(
g) →
ga__f(
X) →
f(
X)
Types:
a__f :: a:f:g → a:f:g
f :: a:f:g → a:f:g
a :: a:f:g
g :: a:f:g
mark :: a:f:g → a:f:g
hole_a:f:g1_0 :: a:f:g
gen_a:f:g2_0 :: Nat → a:f:g
Generator Equations:
gen_a:f:g2_0(0) ⇔ a
gen_a:f:g2_0(+(x, 1)) ⇔ f(gen_a:f:g2_0(x))
The following defined symbols remain to be analysed:
mark
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_a:f:g2_0(
+(
1,
n14_0))) →
*3_0, rt ∈ Ω(n14
0)
Induction Base:
mark(gen_a:f:g2_0(+(1, 0)))
Induction Step:
mark(gen_a:f:g2_0(+(1, +(n14_0, 1)))) →RΩ(1)
a__f(mark(gen_a:f:g2_0(+(1, n14_0)))) →IH
a__f(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
a__f(
f(
a)) →
a__f(
g)
mark(
f(
X)) →
a__f(
mark(
X))
mark(
a) →
amark(
g) →
ga__f(
X) →
f(
X)
Types:
a__f :: a:f:g → a:f:g
f :: a:f:g → a:f:g
a :: a:f:g
g :: a:f:g
mark :: a:f:g → a:f:g
hole_a:f:g1_0 :: a:f:g
gen_a:f:g2_0 :: Nat → a:f:g
Lemmas:
mark(gen_a:f:g2_0(+(1, n14_0))) → *3_0, rt ∈ Ω(n140)
Generator Equations:
gen_a:f:g2_0(0) ⇔ a
gen_a:f:g2_0(+(x, 1)) ⇔ f(gen_a:f:g2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_a:f:g2_0(+(1, n14_0))) → *3_0, rt ∈ Ω(n140)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
a__f(
f(
a)) →
a__f(
g)
mark(
f(
X)) →
a__f(
mark(
X))
mark(
a) →
amark(
g) →
ga__f(
X) →
f(
X)
Types:
a__f :: a:f:g → a:f:g
f :: a:f:g → a:f:g
a :: a:f:g
g :: a:f:g
mark :: a:f:g → a:f:g
hole_a:f:g1_0 :: a:f:g
gen_a:f:g2_0 :: Nat → a:f:g
Lemmas:
mark(gen_a:f:g2_0(+(1, n14_0))) → *3_0, rt ∈ Ω(n140)
Generator Equations:
gen_a:f:g2_0(0) ⇔ a
gen_a:f:g2_0(+(x, 1)) ⇔ f(gen_a:f:g2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_a:f:g2_0(+(1, n14_0))) → *3_0, rt ∈ Ω(n140)
(20) BOUNDS(n^1, INF)